Undecidable Properties of Limit Set Dynamics of Cellular Automata
نویسندگان
چکیده
Cellular Automata (CA) are discrete dynamical systems and an abstract model of parallel computation. The limit set of a cellular automaton is its maximal topological attractor. A well know result, due to Kari, says that all nontrivial properties of limit sets are undecidable. In this paper we consider properties of limit set dynamics, i.e. properties of the dynamics of Cellular Automata restricted to their limit sets. There can be no equivalent of Kari’s Theorem for limit set dynamics. Anyway we show that there is a large class of undecidable properties of limit set dynamics, namely all properties of limit set dynamics which imply stability or the existence of a unique subshift attractor. As a consequence we have that it is undecidable whether the cellular automaton map restricted to the limit set is the identity, closing, injective, expansive, positively expansive, transitive.
منابع مشابه
Revisiting the Rice Theorem of Cellular Automata
A cellular automaton is a parallel synchronous computing model, which consists in a juxtaposition of finite automata whose state evolves according to that of their neighbors. It induces a dynamical system on the set of configurations, i.e. the infinite sequences of cell states. The limit set of the cellular automaton is the set of configurations which can be reached arbitrarily late in the evol...
متن کاملUndecidable properties on the dynamics of reversible one-dimensional cellular automata
Many properties of the dynamics of one-dimensional cellular automata are known to be undecidable. However, the undecidability proofs often rely on the undecidability of the nilpotency problem, and hence cannot be applied in the case the automaton is reversible. In this talk we review some recent approaches to prove dynamical properties of reversible 1D CA undecidable. Properties considered incl...
متن کاملRice's Theorem for μ-Limit Sets of Cellular Automata
Cellular automata are a parallel and synchronous computing model, made of infinitely many finite automata updating according to the same local rule. Rice’s theorem states that any nontrivial property over computable functions is undecidable. It has been adapted by Kari to limit sets of cellular automata [Kar94], that is the set of configurations that can be reached arbitrarily late. This paper ...
متن کاملStable Dynamics of Sand Automata
In this paper, we study different notions of stability of sand automata, dynamical systems inspired by sandpile models and cellular automata. First, we study the topological stability properties of equicontinuity and ultimate periodicity, proving that they are equivalent. Then, we deal with nilpotency. The classical definition for cellular automata being meaningless in that setting, we define a...
متن کاملTuring Degrees of Limit Sets of Cellular Automata
Cellular automata are discrete dynamical systems and a model of computation. The limit set of a cellular automaton consists of the configurations having an infinite sequence of preimages. It is well known that these always contain a computable point and that any non-trivial property on them is undecidable. We go one step further in this article by giving a full characterization of the sets of T...
متن کامل